Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant

نویسندگان

  • T R Graham
  • S D Emr
چکیده

The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.

The vacuolar protein-sorting (VPS) pathway of Saccharomyces cerevisiae mediates localization of proteins from the trans-Golgi to the vacuole via a prevacuolar endosome compartment. Mutations in class D vacuolar protein-sorting (vps) genes affect vesicle-mediated Golgi-to-endosome transport and result in secretion of vacuolar proteins. Temperature-sensitive-for-function (tsf) and dominant negati...

متن کامل

SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane

Classic studies of temperature-sensitive secretory (sec) mutants have demonstrated that secreted and plasma membrane proteins follow a common SEC pathway via the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles to the cell periphery. The yeast protein Ist2p, which is synthesized from a localized mRNA, travels from the ER to the plasma membrane via a novel route that operates ...

متن کامل

Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole

We have characterized the structure, biogenesis, and localization of dipeptidyl aminopeptidase B (DPAP B), a membrane protein of the yeast vacuole. An antibody specific for DPAP B recognizes a 120-kD glycoprotein in yeast that behaves like an integral membrane protein in that it is not removed from membranes by high pH Na2CO3 treatment. Inspection of the deduced amino acid sequence of DPAP B re...

متن کامل

Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p.

In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar comp...

متن کامل

A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis.

An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum-Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 114  شماره 

صفحات  -

تاریخ انتشار 1991